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Abstract—We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We
describe a hierarchical system that closely follows the organization of visual cortex and builds an increasingly complex and invariant
feature representation by alternating between a template matching and a maximum pooling operation. We demonstrate the strength of
the approach on a range of recognition tasks: From invariant single object recognition in clutter to multiclass categorization problems
and complex scene understanding tasks that rely on the recognition of both shape-based as well as texture-based objects. Given the
biological constraints that the system had to satisfy, the approach performs surprisingly well: It has the capability of learning from only a
few training examples and competes with state-of-the-art systems. We also discuss the existence of a universal, redundant dictionary
of features that could handle the recognition of most object categories. In addition to its relevance for computer vision, the success of
this approach suggests a plausibility proof for a class of feedforward models of object recognition in cortex.

Index Terms—Object recognition, model, visual cortex, scene understanding, neural network.
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1 INTRODUCTION

UNDERSTANDING how visual cortex recognizes objects is a
critical question for neuroscience. Because humans and

primates outperform the best machine vision systems with
respect to almost any measure, building a system that
emulates object recognition in cortex has always been an
attractive but elusive goal. For the most part, the use of
visual neuroscience in computer vision has been limited to
early vision for deriving stereo algorithms (e.g., [1]) and to
justify the use of DoG (derivative-of-Gaussian) filters and
more recently of Gabor filters [2], [3]. No real attention has
been given to biologically plausible features of higher
complexity. While mainstream computer vision has always
been inspired and challenged by human vision, it seems to
never have advanced past the very first stages of processing
in the simple (and binocular) cells in V 1 and V 2. Although
some of the systems inspired—to various degrees—by
neuroscience [4], [5], [6], [7], [8], [9], [10] have been tested
on at least some natural images, neurobiological models of

object recognition in cortex have not yet been extended to
deal with real-world image databases [11], [12], [13], [14].

We present a system that is based on a quantitative theory
of the ventral stream of visual cortex [14], [15]. A key element
in the approach is a new set of scale and position-tolerant
feature detectors, which agree quantitatively with the tuning
properties of cells along the ventral stream of visual cortex.
These features are adaptive to the training set, though we also
show that a universal feature set, learned from a set of natural
imagesunrelated toanycategorization task, likewiseachieves
good performance. To exemplify the strength of this feature-
based representation, we demonstrate classification results
with simple linear classifiers. We show that the approach
performs well on the recognition of isolated objects in clutter
for both binary and multiclass classification problems on
publicly available data sets. Our approach also demonstrates
good classification results on a challenging (street) scene
understanding application that requires the recognition of
both shape-based as well as texture-based objects.

Both the source code of our system and the StreetScenes
data set used in our experiments are readily available [16].

1.1 Related Work
Hierarchical architectures have been shown to outperform
single-template (flat) object recognition systems on a variety
of object recognition tasks (e.g., face detection [17] and car
detection [18]). In particular, constellation models [19], [20],
[21] have been shown to be able to learn to recognize many
objects (one at a time) using an unsegmented training set
from just a few examples [20], [21]. Multilayered convolu-
tional networks were shown to perform extremely well in
the domain of digit recognition [4], [5] and, more recently,
generic object recognition [10] and face identification [22].

The simplest and one of the most popular appearance-
based feature descriptors corresponds to a small gray value
patch [23] of an image, also called component [17], [24], part
[19], [25], or fragment [26]. Such patch-based descriptors are,
however, limited in their ability to capture variations in the
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object appearance: They are very selective for a target shape
but lack invariance with respect to object transformations.

At the other extreme, histogram-based descriptors [27],
[28], [29] have been shown to be very robust with respect to
object transformations. Perhaps the most popular features
are the SIFT features [27], which excel in the redetection of a
previously seen object under new image transformations
and have been shown to outperform other descriptors [30].
However, as we confirmed experimentally (see Sec-
tion 3.1.2), with such a degree of invariance, it is very
unlikely that these features could perform well on a generic
object recognition task.

The new appearance-based feature descriptors described
here exhibit a balanced trade-off between invariance and
selectivity. They are more flexible than image patches and
more selective than local histogram-based descriptors.
Though they are not strictly invariant to rotation, invariance
to rotation could, in principle, be introduced via the training
set (e.g., by introducing rotated versions of the original input).

1.2 The Standard Model of Visual Cortex
Our system follows a recent theory of the feedforward
path of object recognition in cortex that accounts for the
first 100-200 milliseconds of processing in the ventral
stream of primate visual cortex [14], [15]. The model itself
attempts to summarize—in a quantitative way—a core of
well-accepted facts about the ventral stream in the visual
cortex (see [15] for a review):

1. Visual processing is hierarchical, aiming to build
invariance to position and scale first and then to
viewpoint and other transformations.

2. Alongthehierarchy, thereceptive fieldsof theneurons
(i.e., the part of the visual field that could potentially
elicit a response from the neuron) as well as the
complexity of their optimal stimuli (i.e., the set of
stimuli that elicit a response of the neuron) increases.

3. The initial processing of information is feedforward
(for immediate recognition tasks, i.e., when the image
presentation is rapid and there is no time for eye
movements or shifts of attention).

4. Plasticity and learning probably occurs at all stages
and certainly at the level of inferotemporal (IT)
cortex and prefrontal cortex (PFC), the top-most
layers of the hierarchy.

In its simplest form, the model consists of four layers of
computational units, where simple S units alternate with
complex C units. The S units combine their inputs with a
bell-shaped tuning function to increase selectivity. The
C units pool their inputs through a maximum (MAX)
operation, thereby increasing invariance.1 Evidence for the
two key operations as well as biophysically plausible
circuits can be found in [15]. The model is qualitatively
and quantitatively consistent with (and, in some cases,
actually predicts) several properties of cells along the
ventral stream of visual cortex (see [15] for an overview).
For instance, the model predicts, at the C1 and C2 levels (see
Fig. 1), respectively, the max-like behavior of a subclass of
complex cells in V1 [31] and cells in V4 [32]. Read-out from

units similar to the C2 units in Fig. 1 predicted recent read-
out experiments in monkey IT cortex [33], showing very
similar selectivity and invariance for the same set of stimuli.

The model in its initial version [14] used a very simple
static dictionary of handcrafted features. It was suggested
that features from intermediate and higher layers in the
model should instead be learned from visual experience.
Here, we extend the model by showing how to learn a
vocabulary of visual features from images and applying it
to the recognition of real-world object-categories. Prelimin-
ary results previously appeared in several conference
proceedings [34], [35], [36].

2 DETAILED IMPLEMENTATION

S1 units: Our system is summarized in Fig. 1. A gray-value
input image is first analyzed by a multidimensional array of
simple S1 units which correspond to the classical simple cells
of Hubel and Wiesel found in the primary visual cortex (V1)
[11]. S1 units take the form of Gabor functions [2], which have
been shown to provide a good model of cortical simple cell
receptive fields [3] and are described by the following
equation:

F ðx; yÞ … exp �
ðx2

o þ �2y2
oÞ

2�2

� �
� cos

2�
�

xo

� �
; s:t: ð1Þ

xo … x cos � þ y sin � and yo … �x sin � þ y cos �: ð2Þ

All filter parameters, i.e., the aspect ratio, � … 0:3, the
orientation �, the effective width �, the wavelength � as well
as the filter sizes s were adjusted so that the tuning
properties of the corresponding S1 units match the bulk of
V1 parafoveal simple cells based on data from two groups
[37], [38], [39], [40]. This was done by sampling the
parameter space, applying the corresponding filters to
stimuli commonly used to probe cortical cells (i.e., gratings,
bars, and edges) and selecting the parameter values that
capture the tuning properties of the bulk of V1 simple cells
(see Table 1 and [41] for details). We arranged the S1 filters
to form a pyramid of scales, spanning a range of sizes from
7 � 7 to 37 � 37 pixels in steps of two pixels. To keep the
number of units tractable, we considered four orientations
(0�, 45�, 90�, and 135�), thus leading to 64 different S1
receptive field types total (16 scales � 4 orientations).

C1 units: The next, C1, stage corresponds to cortical
complex cells which show some tolerance to shift and size:
Complex cells tend to have larger receptive fields (twice as
large as simple cells), respond to oriented bars or edges
anywhere within their receptive fields (tolerance to posi-
tion), and tend to be more broadly tuned than simple cells
(tolerance to size) [11]. C1 units pool over retinotopically
organized afferent S1 units from the previous layer with the
same orientation and from the same scale band (see Table 1).
Each scale band contains two adjacent filter sizes (there are
eight scale bands for a total of 16 S1 filter sizes). For
instance, scale band 1 contains S1 filters with sizes 7 � 7 and
9 � 9. The scale band index of the S1 units also determines
the size of the S1 neighborhood NS � NS over which the
C1 units pool. Again, this process is done for each of the
four orientations and each scale band independently.

This pooling increases the tolerance to 2D transformations
from layer S1 to C1. The corresponding pooling operation is a
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1. In this paper, we used a Gaussian function but, as discussed in [15], a
bell-shaped tuning function could also be approximated via a normalized
dot-product.
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MAX operation. That is, the response r of a complex unit
corresponds to the response of the strongest of its m afferents
ðx1; . . . ; xmÞ from the previous S1 layer such that:

r … max
j…1...m

xj: ð3Þ

Consider, for instance, the first band: S … 1. For each
orientation, it contains two S1 maps: The one obtained using a

filter of size 7 � 7 and the one obtained using a filter of size
9 � 9 (see Table 1). The maps have the same dimensionality
but they are the outputs of different filters. The C1 unit
responses are computed by subsampling these maps using a
cell grid of size NS � NS … 8 � 8. From each grid cell, one
single measurement is obtained by taking the maximum of all
64 elements. As a last stage, we take a max over the two scales
from within the same spatial neighborhood, by recording
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Fig. 1. System overview: A gray-value input image is first analyzed by an array of S1 units at four different orientations and 16 scales. At the next
C1 layer, the image is subsampled through a local MAX ðMÞ pooling operation over a neighborhood of S1 units in both space and scale, but with the
same preferred orientation. In the next stage, S2 units are essentially RBF units, each having a different preferred stimulus. Note that S2 units are tiled
across all positions and scales. A MAX pooling operation is performed over S2 units with the same selectivity to yield the C2 unit responses.
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only the maximum value from the two maps. Note that
C1 responses are not computed at every possible locations
and that C1 units only overlap by an amount �S . This makes
the computations at the next stage more efficient. Again,
parameters (see Table 1) governing this pooling operation
were adjusted such that the tuning of the C1 units match the
tuning of complex cells as measured experimentally (see [41]
for details).

S2 units: In the S2 layer, units pool over afferent C1 units
from a local spatial neighborhood across all four orienta-
tions. S2 units behave as radial basis function (RBF) units.2

Each S2 unit response depends in a Gaussian-like way on
the Euclidean distance between a new input and a stored
prototype. That is, for an image patch X from the previous
C1 layer at a particular scale S, the response r of the
corresponding S2 unit is given by:

r … exp ��kX � Pik2
� �

; ð4Þ

where � defines the sharpness of the TUNING and Pi is one
of the N features (center of the RBF units) learned during
training (see below). At runtime, S2 maps are computed
across all positions for each of the eight scale bands. One
such multiple scale map is computed for each one of the
ðN � 1; 000Þ prototypes Pi.

C2 units: Our final set of shift- and scale-invariant C2
responses is computed by taking a global maximum ((3))
over all scales and positions for each S2 type over the entire
S2 lattice, i.e., the S2 measures the match between a stored
prototype Pi and the input image at every position and
scale; we only keep the value of the best match and discard
the rest. The result is a vector of N C2 values, where N
corresponds to the number of prototypes extracted during
the learning stage.

The learning stage: The learning process corresponds to
selecting a set of N prototypes Pi (or features) for the S2 units.
This is done using a simple sampling process such that,
during training, a large pool of prototypes of various sizes
and at random positions are extracted from a target set of

images. These prototypes are extracted at the level of the C1
layer across all four orientations, i.e., a patch Po of size n � n
contains n � n � 4 elements. In the following, we extracted
patches of four different sizes ðn … 4; 8; 12; 16Þ. An important
question for both neuroscience and computer vision regards
the choice of the unlabeled target set from which to learn—in
an unsupervised way—this vocabulary of visual features. In
the following, features are learned from the positive training
set for each object independently, but, in Section 3.1.2, we
show how a universal dictionary of features can be learned
from a random set of natural images and shared between
multiple object classes.

The Classification Stage: At runtime, each image is propa-
gated through the architecture described in Fig. 1. The C1 and
C2 standard model features (SMFs) are then extracted and
further passed to a simple linear classifier (we experimented
with both SVM and boosting).

3 EMPIRICAL EVALUATION

We evaluate the performance of the SMFs in several object
detection tasks. In Section 3.1, we show results for detection in
clutter (sometimes referred to as weakly supervised) for
which the target object in both the training and test sets
appears at variable scales and positions within an unseg-
mented image, such as in the CalTech101 object database [21].
For such applications, because 1) the size of the image to be
classified may vary and 2) because of the large variations in
appearance, we use the scale and position-invariant C2 SMFs
(the number N of which is independent of the image size and
only depends on the number of prototypes learned during
training) that we pass to a linear classifier trained to perform a
simple object present/absent recognition task.

In Section 3.2, we evaluate the performance of the SMFs in
conjunction with a windowing approach. That is, we extract a
large number of fixed-size image windows from an input
image at various scales and positions, which each have to be
classified fora target object tobe present or absent. In this task,
the target object in both the training and test images exhibits a
limited variability to scale and position (lighting and within-
class appearance variability remain) which is accounted for
by the scanning process. For this task, the presence of clutter
within each image window to be classified is also limited.
Because the size of the image windows is fixed, both C1 and
C2 SMFs can be used for classification. We show that, for such
an application, due to the limited variability of the target
object in position and scale and the absence of clutter, C1 SMFs
appear quite competitive.

In Section 3.3, we show results using the SMFs for the
recognition of texture-based objects like trees and roads. For
this application, the performance of the SMFs is evaluated at
every pixel locations from images containing the target
object which is appropriate for detecting amorphous objects
in a scene, where drawing a closely cropped bounding box
is often impossible. For this task, the C2 SMFs outperform
the C1 SMFs.

3.1 Object Recognition in Clutter
Because of their invariance to scale and position, the
C2 SMFs can be used for weakly supervised learning tasks
for which a labeled training set is available but for which the
training set is not normalized or segmented. That is, the
target object is presented in clutter and may undergo large
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TABLE 1
Summary of the S1 and C1 SMFs Parameters

2. This is consistent with well-known response properties of neurons in
primate inferotemporal cortex and seems to be the key property for learning
to generalize in the visual and motor systems [42].
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changes in position and scales. Importantly, the number of
C2 features depends only on the number of patches extracted
during training and is independent of the size of the input
image. Here, to perform different categorization tasks, the
C2 responses computed over a new input image are simply
passed to a linear classifier (linear SVM or boosting).3

Below, we compare the performance of the scale and
translation-invariant C2 features when used as inputs to
simple linear classifiers with other benchmark systems for
the recognition of objects in clutter (i.e., both training and
testing are performed on unsegmented images). We
consider three data sets, denoted CalTech5, CalTech101,
and MIT-CBCL, to evaluate our system performance.

3.1.1 Image Data Sets
CalTech5: We consider five of the databases,4 i.e., the frontal-
face, motorcycle, rear-car, and airplane data sets from [20],
as well as the leaf data set from [19]. On these data sets, we
used the same fixed splits as in the corresponding studies
whenever applicable and otherwise generated random
splits. All images were rescaled to be 140 pixels in height
(width was rescaled accordingly so that the image aspect
ratio was preserved) and converted to gray scale.

CalTech101: It contains 101 object classes plus a back-
ground class (see [21] for details). All results reported were
generated with 10 random splits. In the binary experiments,
we used 50 negative training examples and a variable number
of positive training examples (1, 3, 15, 30, and 40). For testing,
we selected 50 negative examples and 50 positive examples
from the remaining images (or as many left if less than 50 were
available). In the multiclass experiment, we used 15 or
30 training images per class. This includes the background
class and the “faces” and “faces-easy” as three of the classes.
We used as many as 50 testing examples per class, less if there
were not enough examples left after training. If less than
50 examples were used, the results were normalized to reflect
equal contributions for each class. We report the mean and
standard deviation of the performance across all classes. All
images were rescaled to be 140 pixels in height (width was
rescaled accordingly so that the image aspect ratio was
preserved) and converted to gray scale.

MIT-CBCL: This includes a near-frontal ð�30�Þ face data
set [17] and a multiview car data set from [18] (see Fig. 2). The
face data set contains about 6,900 positive and 13,700 negative

images for training and 427 positive and 5,000 negative
images for testing. The car data set contains 4,000 positive and
1,600 negative training examples and 1,700 test examples
(both positive and negative). Although the benchmark algo-
rithms were trained on the full sets and the results reported
accordingly, our system only used a subset of the training sets
(500 examples of each class only).

These two MIT-CBCL data sets are challenging: The face
patterns used for testing are a subset of the CMU PIE database
[44], which contains a large variety of faces under extreme
illumination conditions (see [17]). The test nonface patterns
were selected by a low-resolution LDA classifier as the most
similar to faces (the LDA classifier was trained on an
independent 19 � 19 low-resolution training set). The car
database includes a wide variety of vehicles, including SUVs,
trucks, buses, etc., under wide pose and lighting variations.
Randomimagepatternsatvariousscales thatwerenot labeled
as vehicles were extracted and used as a negative test set.

3.1.2 Results
Comparison with benchmark systems: Table 2 summarizes the
performance of the C2 SMFs compared with other published
results from benchmark systems: the constellation models by
Perona et al. [19], [20], the hierarchical SVM-based face-
detection system by Heisele et al. [17] and a standard system
[18] that uses Ullman et al.’s fragments [26] and gentleBoost
as in [45]. The performance measure reported is the accuracy
at the equilibrium point, i.e., the accuracy point such that the
false positive rate equals the miss rate. Results obtained with
the C2 SMFs are superior to previous approaches [17], [18] on
the MIT-CBCL data sets and comparable to the best systems
[46], [47] on the CalTech5 data sets.5

Comparison with SIFT features: We also compared the C2
SMFs to a system based on Lowe’s SIFT features [27]. To
perform this comparison at the feature level and ensure a fair
comparison between the two systems, we neglected all
position information recovered by Lowe’s algorithm. It was
recently suggested in [47] that structural information does not
seem to help improve recognition performance. We selected
1,000 random reference key-points from the training set.
Given a new image, we measured the minimum distance
between all its key-points and the 1,000 reference key-points,
thus obtaining a feature vector of size 1,000.6
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3. More biologically plausible classifiers are described in [43]. Such
classifiers are likely to correspond to the task-specific circuits in the cortex
from IT to PFC (see [15], [43]).

4. Available at http://www.robots.ox.ac.uk/vgg/data3.html.

5. Experimental procedures may vary from one group to another (e.g.,
splits used, preprocessing, scale normalization, etc.). Comparisons should
therefore be taken cautiously.

6. Lowe recommends using the ratio of the distances between the nearest
and the second closest key-point as a similarity measure. We found instead
that the minimum distance leads to better performance than the ratio.

Fig. 2. Sample images from the MIT-CBCL multiview car [18] and face
[17] data sets.

TABLE 2
Results Obtained with 1,000 C2 Features Combined with
SVM or GentleBoost (boost) Classifiers and Comparison

with Existing Systems (Benchmark)
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Fig. 3 shows a comparison between the performance of the
SIFT and the C2 SMFs (both with gentleBoost; similar results
were obtained with a linear SVM). Fig. 3a shows a comparison
on the CalTech5 database for different numbers of features
(obtained by selecting a random number of them from the
1,000 available) and Fig. 3b on the CalTech101 database for
different number of training examples. In both cases, the
C2 features outperform the SIFT features significantly. SIFT
features excel in the redetection of a transformed version of a
previously seen example, but may lack selectivity for a more
general categorization task at the basic level.

Number of features and training examples: To investigate
the contribution of the number of features on performance,
we first created a set of 10,000 C2 SMFs and then randomly
selected subsets of various sizes. The results reported are
averaged over 10 independent runs. As Fig. 4a shows,
while the performance of the system can be improved with
more features (e.g., the whole set of 10,000 features),
reasonable performance can already be obtained with 50-
100 features. Features needed to reach the plateau (about

1,000-5,000 features) is much larger than the number used
by current systems (on the order of 10-100 for [17], [26], [45]
and 4-8 for constellation approaches [19], [20], [21]). This
may come from the fact that we only sample the space of
features and do not perform any clustering step like other
approaches (including an earlier version of this system
[34]). We found clustering to be sensitive to the choice of
parameters and initializations, leading to poorer results.

We also studied the influence of the number of training
examples on the performance of the system on the
CalTech101 database. For each object category, we generated
different positive training sets of size 1, 3, 6, 15, and 30 as in
[21] (see Section 3.1.1). As shown in Fig. 4b, the system
achieves error rates comparable to [21] on a few training
examples (less than 15), but its performance still improves
with more examples (where the system by Fei-Fei et al.
seems to be reaching a plateau, see [21]). Results with an
SVM (not shown) are similar, although the performance
tended to be higher on very few training examples (as SVM
seems to avoid overfitting even for one example).
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Fig. 3. Comparison between the SIFT and the C2 features on the CalTech5 for (a) different numbers of features and on the (b) CalTech101 for a
different number of training examples.

Fig. 4. Performance obtained with gentleBoost and different numbers of C2 features on the (a) CalTech5 and on sample categories from the
(b) CalTech101 for a different number of training examples.
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